Copied to
clipboard

G = C23.677C24order 128 = 27

394th central stem extension by C23 of C24

p-group, metabelian, nilpotent (class 2), monomial

Aliases: C24.87C23, C23.677C24, C22.4502+ (1+4), C22.3432- (1+4), C425C436C2, (C22×C4).592C23, (C2×C42).708C22, C23.4Q8.28C2, C23.Q8.39C2, C23.11D4.54C2, C24.C22.74C2, C23.83C23113C2, C23.81C23122C2, C23.65C23150C2, C23.63C23179C2, C2.C42.381C22, C2.67(C22.50C24), C2.48(C22.57C24), C2.60(C22.34C24), C2.115(C22.46C24), C2.100(C22.33C24), C2.106(C22.47C24), C2.114(C22.36C24), (C2×C4).226(C4○D4), (C2×C4⋊C4).487C22, C22.538(C2×C4○D4), (C2×C22⋊C4).315C22, SmallGroup(128,1509)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C23.677C24
C1C2C22C23C22×C4C2×C42C23.65C23 — C23.677C24
C1C23 — C23.677C24
C1C23 — C23.677C24
C1C23 — C23.677C24

Subgroups: 356 in 189 conjugacy classes, 88 normal (82 characteristic)
C1, C2 [×7], C2, C4 [×17], C22 [×7], C22 [×7], C2×C4 [×6], C2×C4 [×39], C23, C23 [×7], C42 [×4], C22⋊C4 [×10], C4⋊C4 [×16], C22×C4 [×14], C24, C2.C42 [×14], C2×C42 [×3], C2×C22⋊C4 [×7], C2×C4⋊C4 [×11], C425C4, C23.63C23 [×2], C24.C22 [×3], C23.65C23 [×3], C23.Q8, C23.11D4 [×2], C23.81C23, C23.4Q8, C23.83C23, C23.677C24

Quotients:
C1, C2 [×15], C22 [×35], C23 [×15], C4○D4 [×6], C24, C2×C4○D4 [×3], 2+ (1+4) [×2], 2- (1+4) [×2], C22.33C24, C22.34C24, C22.36C24, C22.46C24, C22.47C24, C22.50C24, C22.57C24, C23.677C24

Generators and relations
 G = < a,b,c,d,e,f,g | a2=b2=c2=1, d2=abc, e2=f2=ba=ab, g2=a, ac=ca, ede-1=ad=da, geg-1=ae=ea, af=fa, ag=ga, bc=cb, fdf-1=bd=db, be=eb, bf=fb, bg=gb, cd=dc, fef-1=ce=ec, cf=fc, cg=gc, gdg-1=abd, fg=gf >

Smallest permutation representation
On 64 points
Generators in S64
(1 61)(2 62)(3 63)(4 64)(5 50)(6 51)(7 52)(8 49)(9 59)(10 60)(11 57)(12 58)(13 47)(14 48)(15 45)(16 46)(17 56)(18 53)(19 54)(20 55)(21 36)(22 33)(23 34)(24 35)(25 44)(26 41)(27 42)(28 43)(29 39)(30 40)(31 37)(32 38)
(1 53)(2 54)(3 55)(4 56)(5 35)(6 36)(7 33)(8 34)(9 32)(10 29)(11 30)(12 31)(13 27)(14 28)(15 25)(16 26)(17 64)(18 61)(19 62)(20 63)(21 51)(22 52)(23 49)(24 50)(37 58)(38 59)(39 60)(40 57)(41 46)(42 47)(43 48)(44 45)
(1 20)(2 17)(3 18)(4 19)(5 22)(6 23)(7 24)(8 21)(9 40)(10 37)(11 38)(12 39)(13 44)(14 41)(15 42)(16 43)(25 47)(26 48)(27 45)(28 46)(29 58)(30 59)(31 60)(32 57)(33 50)(34 51)(35 52)(36 49)(53 63)(54 64)(55 61)(56 62)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)
(1 41 18 16)(2 27 19 47)(3 43 20 14)(4 25 17 45)(5 9 24 38)(6 60 21 29)(7 11 22 40)(8 58 23 31)(10 36 39 51)(12 34 37 49)(13 62 42 54)(15 64 44 56)(26 53 46 61)(28 55 48 63)(30 52 57 33)(32 50 59 35)
(1 47 18 27)(2 43 19 14)(3 45 20 25)(4 41 17 16)(5 10 24 39)(6 30 21 57)(7 12 22 37)(8 32 23 59)(9 49 38 34)(11 51 40 36)(13 53 42 61)(15 55 44 63)(26 56 46 64)(28 54 48 62)(29 50 60 35)(31 52 58 33)
(1 35 61 24)(2 51 62 6)(3 33 63 22)(4 49 64 8)(5 18 50 53)(7 20 52 55)(9 46 59 16)(10 27 60 42)(11 48 57 14)(12 25 58 44)(13 39 47 29)(15 37 45 31)(17 34 56 23)(19 36 54 21)(26 32 41 38)(28 30 43 40)

G:=sub<Sym(64)| (1,61)(2,62)(3,63)(4,64)(5,50)(6,51)(7,52)(8,49)(9,59)(10,60)(11,57)(12,58)(13,47)(14,48)(15,45)(16,46)(17,56)(18,53)(19,54)(20,55)(21,36)(22,33)(23,34)(24,35)(25,44)(26,41)(27,42)(28,43)(29,39)(30,40)(31,37)(32,38), (1,53)(2,54)(3,55)(4,56)(5,35)(6,36)(7,33)(8,34)(9,32)(10,29)(11,30)(12,31)(13,27)(14,28)(15,25)(16,26)(17,64)(18,61)(19,62)(20,63)(21,51)(22,52)(23,49)(24,50)(37,58)(38,59)(39,60)(40,57)(41,46)(42,47)(43,48)(44,45), (1,20)(2,17)(3,18)(4,19)(5,22)(6,23)(7,24)(8,21)(9,40)(10,37)(11,38)(12,39)(13,44)(14,41)(15,42)(16,43)(25,47)(26,48)(27,45)(28,46)(29,58)(30,59)(31,60)(32,57)(33,50)(34,51)(35,52)(36,49)(53,63)(54,64)(55,61)(56,62), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,41,18,16)(2,27,19,47)(3,43,20,14)(4,25,17,45)(5,9,24,38)(6,60,21,29)(7,11,22,40)(8,58,23,31)(10,36,39,51)(12,34,37,49)(13,62,42,54)(15,64,44,56)(26,53,46,61)(28,55,48,63)(30,52,57,33)(32,50,59,35), (1,47,18,27)(2,43,19,14)(3,45,20,25)(4,41,17,16)(5,10,24,39)(6,30,21,57)(7,12,22,37)(8,32,23,59)(9,49,38,34)(11,51,40,36)(13,53,42,61)(15,55,44,63)(26,56,46,64)(28,54,48,62)(29,50,60,35)(31,52,58,33), (1,35,61,24)(2,51,62,6)(3,33,63,22)(4,49,64,8)(5,18,50,53)(7,20,52,55)(9,46,59,16)(10,27,60,42)(11,48,57,14)(12,25,58,44)(13,39,47,29)(15,37,45,31)(17,34,56,23)(19,36,54,21)(26,32,41,38)(28,30,43,40)>;

G:=Group( (1,61)(2,62)(3,63)(4,64)(5,50)(6,51)(7,52)(8,49)(9,59)(10,60)(11,57)(12,58)(13,47)(14,48)(15,45)(16,46)(17,56)(18,53)(19,54)(20,55)(21,36)(22,33)(23,34)(24,35)(25,44)(26,41)(27,42)(28,43)(29,39)(30,40)(31,37)(32,38), (1,53)(2,54)(3,55)(4,56)(5,35)(6,36)(7,33)(8,34)(9,32)(10,29)(11,30)(12,31)(13,27)(14,28)(15,25)(16,26)(17,64)(18,61)(19,62)(20,63)(21,51)(22,52)(23,49)(24,50)(37,58)(38,59)(39,60)(40,57)(41,46)(42,47)(43,48)(44,45), (1,20)(2,17)(3,18)(4,19)(5,22)(6,23)(7,24)(8,21)(9,40)(10,37)(11,38)(12,39)(13,44)(14,41)(15,42)(16,43)(25,47)(26,48)(27,45)(28,46)(29,58)(30,59)(31,60)(32,57)(33,50)(34,51)(35,52)(36,49)(53,63)(54,64)(55,61)(56,62), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64), (1,41,18,16)(2,27,19,47)(3,43,20,14)(4,25,17,45)(5,9,24,38)(6,60,21,29)(7,11,22,40)(8,58,23,31)(10,36,39,51)(12,34,37,49)(13,62,42,54)(15,64,44,56)(26,53,46,61)(28,55,48,63)(30,52,57,33)(32,50,59,35), (1,47,18,27)(2,43,19,14)(3,45,20,25)(4,41,17,16)(5,10,24,39)(6,30,21,57)(7,12,22,37)(8,32,23,59)(9,49,38,34)(11,51,40,36)(13,53,42,61)(15,55,44,63)(26,56,46,64)(28,54,48,62)(29,50,60,35)(31,52,58,33), (1,35,61,24)(2,51,62,6)(3,33,63,22)(4,49,64,8)(5,18,50,53)(7,20,52,55)(9,46,59,16)(10,27,60,42)(11,48,57,14)(12,25,58,44)(13,39,47,29)(15,37,45,31)(17,34,56,23)(19,36,54,21)(26,32,41,38)(28,30,43,40) );

G=PermutationGroup([(1,61),(2,62),(3,63),(4,64),(5,50),(6,51),(7,52),(8,49),(9,59),(10,60),(11,57),(12,58),(13,47),(14,48),(15,45),(16,46),(17,56),(18,53),(19,54),(20,55),(21,36),(22,33),(23,34),(24,35),(25,44),(26,41),(27,42),(28,43),(29,39),(30,40),(31,37),(32,38)], [(1,53),(2,54),(3,55),(4,56),(5,35),(6,36),(7,33),(8,34),(9,32),(10,29),(11,30),(12,31),(13,27),(14,28),(15,25),(16,26),(17,64),(18,61),(19,62),(20,63),(21,51),(22,52),(23,49),(24,50),(37,58),(38,59),(39,60),(40,57),(41,46),(42,47),(43,48),(44,45)], [(1,20),(2,17),(3,18),(4,19),(5,22),(6,23),(7,24),(8,21),(9,40),(10,37),(11,38),(12,39),(13,44),(14,41),(15,42),(16,43),(25,47),(26,48),(27,45),(28,46),(29,58),(30,59),(31,60),(32,57),(33,50),(34,51),(35,52),(36,49),(53,63),(54,64),(55,61),(56,62)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64)], [(1,41,18,16),(2,27,19,47),(3,43,20,14),(4,25,17,45),(5,9,24,38),(6,60,21,29),(7,11,22,40),(8,58,23,31),(10,36,39,51),(12,34,37,49),(13,62,42,54),(15,64,44,56),(26,53,46,61),(28,55,48,63),(30,52,57,33),(32,50,59,35)], [(1,47,18,27),(2,43,19,14),(3,45,20,25),(4,41,17,16),(5,10,24,39),(6,30,21,57),(7,12,22,37),(8,32,23,59),(9,49,38,34),(11,51,40,36),(13,53,42,61),(15,55,44,63),(26,56,46,64),(28,54,48,62),(29,50,60,35),(31,52,58,33)], [(1,35,61,24),(2,51,62,6),(3,33,63,22),(4,49,64,8),(5,18,50,53),(7,20,52,55),(9,46,59,16),(10,27,60,42),(11,48,57,14),(12,25,58,44),(13,39,47,29),(15,37,45,31),(17,34,56,23),(19,36,54,21),(26,32,41,38),(28,30,43,40)])

Matrix representation G ⊆ GL6(𝔽5)

100000
010000
004000
000400
000010
000001
,
100000
010000
001000
000100
000040
000004
,
400000
040000
001000
000100
000010
000001
,
300000
030000
004300
001100
000001
000040
,
440000
010000
003100
000200
000030
000003
,
330000
420000
002000
000200
000003
000030
,
400000
040000
003000
002200
000001
000010

G:=sub<GL(6,GF(5))| [1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,1],[3,0,0,0,0,0,0,3,0,0,0,0,0,0,4,1,0,0,0,0,3,1,0,0,0,0,0,0,0,4,0,0,0,0,1,0],[4,0,0,0,0,0,4,1,0,0,0,0,0,0,3,0,0,0,0,0,1,2,0,0,0,0,0,0,3,0,0,0,0,0,0,3],[3,4,0,0,0,0,3,2,0,0,0,0,0,0,2,0,0,0,0,0,0,2,0,0,0,0,0,0,0,3,0,0,0,0,3,0],[4,0,0,0,0,0,0,4,0,0,0,0,0,0,3,2,0,0,0,0,0,2,0,0,0,0,0,0,0,1,0,0,0,0,1,0] >;

32 conjugacy classes

class 1 2A···2G2H4A···4R4S···4W
order12···224···44···4
size11···184···48···8

32 irreducible representations

dim1111111111244
type+++++++++++-
imageC1C2C2C2C2C2C2C2C2C2C4○D42+ (1+4)2- (1+4)
kernelC23.677C24C425C4C23.63C23C24.C22C23.65C23C23.Q8C23.11D4C23.81C23C23.4Q8C23.83C23C2×C4C22C22
# reps11233121111222

In GAP, Magma, Sage, TeX

C_2^3._{677}C_2^4
% in TeX

G:=Group("C2^3.677C2^4");
// GroupNames label

G:=SmallGroup(128,1509);
// by ID

G=gap.SmallGroup(128,1509);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,784,253,344,758,723,268,1571,346,80]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=1,d^2=a*b*c,e^2=f^2=b*a=a*b,g^2=a,a*c=c*a,e*d*e^-1=a*d=d*a,g*e*g^-1=a*e=e*a,a*f=f*a,a*g=g*a,b*c=c*b,f*d*f^-1=b*d=d*b,b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,f*e*f^-1=c*e=e*c,c*f=f*c,c*g=g*c,g*d*g^-1=a*b*d,f*g=g*f>;
// generators/relations

׿
×
𝔽